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Abstract - We consider linear ill-posed problems Awu = f in Hilbert spaces, mostly in case A = A* > 0.
Regularized approximations u, to solutions u, of problem Au = f are obtained by a general regularization
scheme, including the Lavrentiev method, iterative and other methods. We assume that instead of
f € R(A) noisy data f are available with the approximately given noise level : it holds || f—f II/é6 < cfor
§ — 0, but ¢ = const is unknown. We propose a new a-posteriori rule for the choice of the regularization
parameter r = r(J) guaranteeing u,sy — u« for § — 0. Note that such convergence is not guaranteed
for the parameter choice given by the L-curve rule, by the GCV-rule and also for discrepancy principle
JAu, — f | = bd with b < c¢. We give error estimates which in case || f—r || < ¢ are quasioptimal and
order-optimal.

1. INTRODUCTION
We consider an operator equation

Au=f, feR(4)), (1)

where A € L(H,H), A= A* > 0 is the linear continuous self-adjoint and non-negative operator; u and
f are elements of the real Hilbert space H. In general our problem is ill-posed: the range R(A4) may
be non-closed, the kernel N(A) may be non-trivial. As usual, in the treatment of ill-posed problems, we
suppose that instead of the exact right-hand side f we have only an approximation f € H with noise
=17

The approximate solution u, of the ill-posed problem Au = f is found by some regularization method
and depends on the regularization parameter r. The important problem is how to choose the proper
regularization parameter . If there is some information about the noise level of the data, this information
should be used for the choice of 7. Consider now the choice of 7 in situations with a different amount of
information about ||f — f||.

Situation 1. Full information about the noise level is known: the exact noise level § with ||f — f]] < &
is given. Then the proper parameter choice 7 = 7(§) guarantees u,y — ux for § — 0, where u, is the
solution of Au = f, the nearest to the initial approximation ug (see Section 2; often ug = 0). In this
situation proper rules for the choice of 7 are the discrepancy principle [9,15,16] and its modification [10].

Situation 2. Nothing is known about the noise level. If there is no information about noise level
§, parameter 7 may be chosen by the quasioptimality criterion [14,15], by the GCV-rule [3,17], by the
L-curve rule [2,8] or by rule of [7]. The serious drawback of these rules is that convergence .5 — .
for § — 0 is not guaranteed (see [1]).

In applied inverse and ill-posed problems the situation is often between extreme Situations 1, 2: some
approximate § is known, but it is unknown, if the inequality || f—7 Il <& holds or not. In this paper
we are interested in the case of approximately given noise level §: instead of the inequality || f—7f 1<é
we assume that || f—f |/6 < ¢ for 6§ — 0, where c is an unknown constant. We give a rule for the
parameter choice r = 7(§) guaranteeing u,(;y — u« for § — 0. This rule was lately proposed in [5, 6],
where convergence is also proven. In this paper we prove error estimates.

2. REGULARIZATION METHODS
We consider the regularization methods in the general form (see [15,16])

ur = (I = Agr(A))uo + g-(A)f (2)

where u, is the approximate solution, uo — initial approximation, » — regularization parameter, I — the
identity operator and the function g,()) satisfies the conditions (3) and (4):

sup |g:(A\)| <yr, 720, (3)
0< <a
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sup )\pll—)\gr()\)igfyp?‘_‘;", r>0,0<p<po. (4)
0<A<a
Here po, v and vy, are positive constants, a > [|Al[, 70 < 1 and the greatest value of po, for which the
inequality (4) holds is called the qualification of method.
The following regularization methods are special cases of the general method (2).

M1 The Lavrentiev method ug = (o + A)~'f. Here ug = 0,7 = a1, g,(\) = A +7r"1)"1, po = 1,
=17 =p"(1-p)"

M2 The iterative variant of the Lavrentiev method. Let m € N, m > 1, ug = ug,o € H — initial
approximation and Uy, o = (@l + A) " (aUp-1,o + f). Here 7 = a7, g.(A) = %(1 - (Tr_lrj)m),

po =m, ¥ =m, yp = (p/m)P(1 —p/m)"P.

M3 Explicit iteration scheme (the Landweber’s method). Let 0 < u < 1/||A|| be a constant and
Up = Un—1 — f(Aun_1 — f), n=1,2,... . Here r = n, g;(A) = +(1 — (1 — pA)"), po = 00, v = i,
Yo = (p/(pe)”.

M4 Implicit iteration scheme. Let o > 0 be a constant and au, + Au, = Qty—1 + f ,n=1,2,.... Here
r=n, g'f’()‘) = %\—(1__ (ﬁ) )’po =00, 7= 1/O‘f*)r)/P: (ap)p'

M5 The method of the Cauchy problem: approximation u, solves the Cauchy problem v'(r)+Au(r) = f,
u(0) = ug. Here g-(A) = +(1—e™™), po =00, y =1, v, = (p/e)?.

Note that some other regularization methods are studied in recent book [4].

3. PARAMETER CHOICE IN THE CASE OF THE KNOWN NOISE LEVEL OF DATA
In regularization methods (2) the error w, — u, depends crucially on the choice of a regularization
parameter r. In the case of small 7 the approximation error of the exact solution is large and in the case
of big r the error u, — u, is large due to noise in data. ~

At first we consider the choice of  in the case when the noise level § with ||f — f|| < ¢ is known.
Then the most prominent rule for methods M2-M5 is the discrepancy principle [9,15,16]. In this rule
the regularization parameter r = rp is chosen as the solution of the equation “Aur — fH = bd with
b = const > 1. The second rule in the case of known § is the modification of the discrepancy principle
(the MD rule) [10]. In this rule the regularization parameter r = rjrp is chosen as the solution of the
equation

I for pg = o0,

HBr(Aur~JF)||%b5 with b= const > 1, Brz{ (I—Agr(A))l/pO for po £ 00

where the operator B, depends on the qualification pg of the method.

The discrepancy principle and its modification coincide for regularization methods M3-M5 where
po = oo, but differ for methods M1, M2, where || B,(Atam — Il = | Atams1 — fl-

Both rules guarantee convergence ||u, — u.|| — 0 for § — 0 and order-optimality: if ug — u. = APv,
veH, |v| <o, p>0,then flu, —u.f < Cpg?i—%?%, where p € (0,pg — 1) for r = rp and p € (0, po)
for r = rup. In contrast to the discrepancy principle the MD rule has also the quasioptimality property:
there exists a constant ¢ such that

irssn = wall < ¢ IELII(T — Agr(A))(uo — w470} (5)

Note that in the case ||f — f|| < & relations (2)—(4) yield estimate [|u, — w.|| < ||(I — Agr(A))(uo —
4 )|| +yré which explains why rules with property (5) are called quasioptimal. It is obvious that if a rule
is quasioptimal, then this rule is order-optimal for all p € (0, po).

The discrepancy principle and the MD-rule are unstable in the sense that if the actual error of the
right-hand side is only slightly larger than b6, then the error of the approximate solution may be arbitrarily
large, irrespective of the value of the ratio of the actual and supposed noise level. For example, if b = 2
and the actual noise level is three times larger than the noise level §, which we use in the rule, then the
error of the approximate solution may be arbitrarily large.

There are also heuristic parameter choice rules which do not use the noise level §: the quasioptimality
criterion [13,14]. the Wahba’s generalized cross-validation rule {17, 3], the Hansen’s L-curve rule [8,2]
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and the rules of [7]. These rules are formulated for non-selfadjoint problems, reformulations for selfadjoint
problems are possible. For example, the selfadjoint variant of the quasioptimality criterion choses the
parameter for which the function k(r) = 7| B,(Au, — f)|| has the global minimum.

Heuristic rules often work well, but as shown by Bakushinskii [1], one cannot prove the convergence
of the approximate solution.

4. PARAMETER CHOICE IF THE NOISE LEVEL IS GIVEN APPROXIMATELY
In applied ill-posed problems the exact noise level is often unknown. Therefore in the following we assume
that only some guesses about this level can be made. It means that the supposed error level § > 0 is
given, but we do not know exactly, if || f—f | < 6 holds or not. We give the rule for the stable parameter
choice which guarantees the convergence of the approximate solution to the exact solution if only the
ratio ||f — f||/6 is bounded in the process § — 0.

Let us introduce the function

o(r) = V| A2 B (Auy = J) | = /(B (Au, — F), AB2(Aur = 1)),

Note that for methods M1, M2 B, = (I+7A)"! and o(r) = ¢(a™ 1) = —\};(AumH,a —f A( AUy 0 —
/2 for iterative methods M3, M4 ¢(r) = ¢(n) = /n{Au, — f, Au, — f))1/2.

Rule P. Let 0 < s <1 and by, by be such constants that by > by > C,,, where the value of the
constant C,, is Cy, = 1/2, Cp, = 1//2m + 3, Cy, = 1/3/2pe, Cp = /a/2 and Cyp, = 1/+/2e for methods
M1-M5 respectively. If ¢(1) < b2d then choose 7(6) = 1. In the contrary case we find at first r2(6) > 1
such that

p(r2(6)) < bad, (6)

o(r) > b1 Vr e [1,72(6)]. (7)

For the regularization parameter 7(§) we choose the parameter 7, for which the function t(r) = 7°|| B,(Au,—
£)| has the global minimum on the interval [1,75(5)].

Let us reformulate the rule P for the choice of the stopping index n(d) as the parameter r in iterative
methods. For this rule P’ the analogous results hold as for the rule P.

Rule P’. Let 0 < s <1 and b be the constant such that b > C,,. Find n(d) as the first n =1,2,..
for which ¢(n) < bd. For the regularization parameter n(d) we choose n € N, for which the function
t(n) = n®||Au, — f|| has the global minimum on the interval {1, n2(d)].

Rules P and P’ are similar to the rules in [11,13,14]. In [11] for the regularization parameter the
parameter 75(J) was taken. We can consider the rule P as the generalization of this rule, since in case s = 0
these rules coincide while the function || B, (Au,— f)|| is monotonically decreasing with respect to r. On the
other hand, in case s = 1 the rule P is similar to the selfadjoint analogue of the quasioptimality criterion.
In both rules the regularization parameter is chosen as the minimizer of the function r|| B, (Au, — f)||,
only intervals for minimization are different: the intervals are [1,72(d)] and {1, c0) respectively.

In [11] for methods M1-M5 the following results are proven:

(i) for each f € H we have lim o(r) = 0;

(i) if || f—f]l <6, Juo—us]| < M, b > C,,, then for each 7, 7 > Ryps5 = Cp M /(b—Cy, )8 we have o(r) <
bd; here the constant C,, in methods M1-M5 has values 12/15/125, (3/2)C/2m™ /(m4-3/2)™+3/2,
(3/(2pe))*2, (30/2)®/D (3/(2¢))/* respectively;

(i) if }Jff;f[[ < const for 6 — 0 then ||u,, 5y — u«|| — 0 for § — 0.

The property (i) and the continuity of the function ¢(r) guarantee that the choice of finite parameters
ro(6) and r(d) < ro(6) according to Rule P is possible. From the property (ii) it follows that if we know
a constant M > 0 such that |Jug — u.]] < M, then it is sufficient to search for the parameter ro(6) in the
finite interval [1, Rpzs]. Note that the function ¢(r) may be non-monotone and therefore in Rule P we
must use the conditions (6)—(7) instead of inequalities b16 < ¢(r) < bad.

Note that the analogues of the results of the paper [11] for non-selfadjoint problems are presented in
[12]. In [5, 6] the following convergence result is proven.

Theorem 1. Let A€ L(H,H), A=A*>0, f € R(A). Let the parameter r(5) be chosen according

to Rule P. If “—f—gﬁt < const in the process § — 0, then in methods M1-Mb

Hur(é) — Uyl — 0 for 6—0.
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In the following theorem we give error estimates, using notation
Y(r) = ||Grluo — us)|| + yrmax{s,||f — fI}, Gr:=1I—Ag.(A).
Theorem 2. Let Ae L(H,H), A= A*>0, f € R(A). Let the parameter r(8) be chosen according

1
to Rule P with s € (0,1). Let §p := QI}BT@)(AUT((;) = . Then for methods M1-M5 the following error

estimates hold

1. If||f — Il < max{8,d0}, then

inf ’(/}(7‘), d* _ max ( T HBT(AUT - f)” _ > ( )
1—s57>0 7! r(8)<r<r'<ry(8)+1 (Q’[")SHBQT/(AU,QT/ — f)”
by, if 7(8) > R(5),

Here p =14 yv1, b*:{ :
r(é)rgngR(é)sO(r)/é, if 7(6) < R(5)

and R(8) s the greatest parameter for which o(r) = bsd.

sy — well < C(b1, 0, ds)

2. Ifmax{8,80} < |~ f1| < = 5| Bu(dus — )|, then

g 1/s
e = el < (L) ™ g v, ©)

To prove Theorem 2, we need the following lemmas.
Lemma 1. Let ||f — f|| < 9 and ¢¥1(r) := [|Gr(uo — us)|| +vrd. Then for methods M1-M5 the
following assertions hold:

a) if | Br(Au, — )| > 618, by > 1, then p1(r) < e1(br)y1(r) for each v < r;
b) if I|Br(Auy — )| < bad, then 91(r) < ea(ba)r(r”) for eachr’ >r;

c) if p(r) 2 b16, b1 > Cp, then 91(r) < c3(b1)¥1(r’) for each v’ <r;

d) if o(s') < bad for each s’ > 7, then 1y (r) < ca(ba)1 (') for each ' > r.

Proof of assertions a) and b) can be found in [10], proof of assertions c¢) and d) can be found in [11].
Lemma 2. Let fy be an element such that

IPOY(fo = NI = 1P = NIl (dPK)(uo —us), fo— f) 20, 0<A<a,

where P()\) is the spectral family of the projectors of the operator A. Then for methods M1-M5 in case
r > 1 it holds ~
V|| Bor(Augr — f)I| < ”71'2 —uf,

where ud = Gruo + g-(4) fo.
Proof. We have B
Up — Usx :GT(UO—U*)~|—QT(A)(f~f), (10)

Br(AuT — f~) = BTGTA(’LLO — 'U:*) - BrGr(f_ f)y

()2 (| Ber(Augr — I = (77)2 | BorGoor Aluo — us)||?
= 2(yr)*(BerGor Ao — i), BorGor(f = £)) + ()| BarGor (f = NI (11)
It is easy to show that for methods M1-M5 the function g,()\) satisfies the following conditions:
a) 0<1-Xg,(A\)<1,0<A<a, r>0;

b) the function 7 — 1 — Ag,(A) is monotonically decreasing for r > 0;



HO1

c) Y ABor(A)(1 = Agor(A)) £1—=2Agr(A), 0 < XA <a,r >0, where
1, if po=o0
(1 —Agr(A\)YPo, if  pg < 0.

d) Y7 Brige (M) (L = Agrggo(N) < gr(A), 0 <A < a, 7 >0, where go = 1 for method M4 and go = 0 for

other methods.

Using these properties of function g.(\), we separately estimate the right-hand terms of the equality
(11). If r > 0, then due to the property c)

(7)2 || BerGor Ao — w)|* = (yr)? /Bﬁr(k)(l — Ager(N))PA2d(P(A) (o — 1), uo — us)
0

< /(1 = Agr (W) d(P(N) (uo — us), uo — us) = [|Gr(uo —us)||?.
0

If r > 1, then 7 + qo < pr and properties b), d) give

(1) BerGer(F = HI? = (v7)? /ﬂﬁr(k)(l = Ager (N2 UPN(f =), F ~ f)
0

< / G NAPN)(F ~ 1, F = £ = lo-(AF = D2 = 9:(A)(fo — DI

If r > 1, then properties a)-d) and assumptions of Lemma 2 yield

— (1) (ByrCorAltto — us), BorGor (f = £)) vr)zfﬂ ()1 = Ager(\)?Ad(P(N) (0 — ua), f = f)

< (y7)? / B2 (L = Agor (N2 AP () (o — ), fo — f) < / (1= Agr(\)gr VAP (tio — 1), fo — f)
0

0
= (Gr(uo — us), 9r(A)(fo — f))
Using now (11), (10) and the last estimates, we can estimate in case 7 > 1

(1) 211 BorGor Aluo—us)||* < |G (uo—~u) [ 24+2(G r(wo—us), 9:(A) (fo— )+l gr (A) (fo— HII* = g —uall?,

which proves the lemma.
Lemma 3. In methods M1-M5 for each r € [r(8),r2(6)] it holds the inequality

llwr ~ wr(s)l cd,
|| Bor(Avgr — Il I-s

Proof. At first we estimate the quantity ||u, — u,(s)|l, where € [r(0),72(0)]. It is easy to show that
for methods M1-M5 the function g,.()) satisfies the following condition

9r(N) = gr—1(N) <ABr—1 (M) (1 = Agr_1(N)) (12)
Denote

— { r, if r—7r(6) is integer (13)

"= r(8) +int(r — r(d)) +1, otherwise.
Now using (12) and the equality B,.(Au, — f) = B,G(Auo — f), we can estimate
e = urgs)ll = l{g-(A) = g @A) = Awo)l| < [[(gr(4) = gr5)(AN(f — Auo)ll = llur — urs) || =

T

| S w2 X lw-ual <y Y IBsdu - A

j=r(8)+1 j=r(8)+1 j=r(8)+1
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By assumption of lemma from definition of d, follows

(7 = D2IBj-1(Auja = )l < du(er)°|| Ber(Augr — f)» (14)

where r(§) < j—1<7—1,r(0) <7 <7y and 7 is defined as in (13) (replace 7 by 72).
Using (12), (14) and monotone decrease of the function 7 — || B,(Au, — f)|| we get for r € [r(6),r2(6)]

T /L N S
r T Uy j=1 + s’f‘
D Ty - sde X Gooy S
V| Bor (Augr — f)| 7(| Bgr(Augr — f G=r(8)+1 J
7—1
78 1 7S 1 1 2 cd
; st 1t =54 <d* CRN - ml-s <d* s 19 _Z 1< *
e rhr(a))“/“” 4~ ¢ r[(rw»s*l—s’“ ]— 9[ *1—s}—1—s’
(6

which proves Lemma 3. .

Proof of Theorem 2. Part 1. At first we consider the case || f — f]] < max{6,do}. Let r, be a parameter
for which the function ¥(r) has a global minimum. To prove the estimate (8), we separately consider
three cases: 1) 7y < 7(8), 2) 7y > 72(d) and 3) r(d) < ri < r2(8).

1. Consider the case r, < r(8). If § > 6 then from (7) follows that o (r(8)) > b1d = by max{3, || f— f]|}
and due to assertion c) of Lemma 1 we get

|ty (5y — || < P(r(8)) < e3(br)p(ry) - (15)

If 6 < do then || B,(5(Aup(s) — Al = 260 > 2max{6, | f — f||} and from assertion a) of Lemma 1 we
get
l[urs) — wsell < 9(r(0)) < c1(2)(r) - (16)
2. Now we consider the case 7. > r2(d). Taking into account the inequalities ¢(s') < b6 <
b.max{4, || f — f||} for each s, s’ > r2(d), Lemma 1 gives

[try(sy — uall < P(ra(8)) < ca(bu)p(rs).

Using now (15) and Lemmas 2 and 3, we can estimate

lur(s)y = Ury(s)
Vr2(0)[| Bors (5) (Attgry(5) — F)

< (14 edi /(1 = 8))P(r2(8)) < ca(bu) (L +edu/(1 = 8))ip(ri) . (17)

3. Case 7(6) < r. <1r3(6). Analogously to the previous case we have

llur sy = vl < tr(sy = Ury (o) |+ l1ury ) —usll < [, 5y =t ll A 12y () — 0|

flursy = tall < Nlturesy — tr | + flur, — usl| <

sy — |l 0
= ||y, — ]| + (e, —ua]] < (1 4ede /(1= 8)9(ri) . (18)
rYT*”BQT* (Augr, — i3l

Now the error estimate (8) easily follows from (15)-(18).
. 1 _
Part I1. Consider the case max{d, || < ||f — f|| < 5 | B1(Auq — f)II. Let r¢ be a parameter for which
| Bro (Atiry — f)|| = 2If — £||. Then Lemma 1 yields

|Grouo = wa)ll + 7ol f = ] < max{es(2),e2(2)} inf (). (19)

From equality || B, (s)(Aupsy—f)|| = 280 and the fact that the function » — || B,.(Au,~ £)l is monotonically
decreasing, follows the inequality 1 < 7o < r(0). Remember that r() is the global minimum point of the
function t(r) = r*||B,(Au, — f)|| on the interval [1,7r5(5)]. Therefore

7811 Bro(Atn, — F)II = (r(9))°|1Brisy (Aurce) — I

from which follows

r(8) < ro(llf = fll/80)"/*. (20)
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Using now (19), (20) and the monotone decrease of the function 7 — 1 — Ag,()), we can estimate

[ttnsy = waell < 1Gigs) (o — wll + ()1 f = FIl < 1Gro (w0 — wll +ro(llf = £I1/80)' /117 — £

< (1F = £11/80)/* (1 Grouo = w)ll + 7ol = £ < CUIF = F1/30)* inf w(r),

which proves the estimate (9). 3

Remark 1. If the function ¢(r) = 7°||B.(Au, — f)|| is monotonously increasing on the interval
[r(8), or2(8) + 1], then d, < 1/¢°. In most of numerical examples (see Table 2) we had d, <1.

Remark 2. One can show that in methods M1, M2, M3 and M5 coefficient ¢(by, b, dy) < 2.5, if
bl = bg = 15Cm, b* = bQ, Cl* < 1/@5.

Remark 3. If the problem (1) is non-selfadjoint, regularization methods have form u, = G,up +
gr(A* A)A* f with G, = (I — A* Ag,(A* A)) (compare (2)). For the choice of the regularization parameter
r the analogue of rule P can be used, where s € (0,1/2) and notations Cy,, ¢(r), t(r) are replaced by
Crm = Pposopo-42)] 72772, 0(r) = VA" G (Auy = )], 1(r) = 721Gy (Auy ~ )| respectively. For
the corresponding rule the analogues of Theorems 1, 2 hold.

5. NUMERICAL EXPERIMENTS
The following Fredholm integral equations of the first kind

b

/lC(t, syu(s)ds = f(t), a<t<b, (21)

a

with K € L?([a,b],[a,b]), u € L?[a,b] were solved by the Lavrentiev method using the choice of the
parameter by the rule P (with the parameters by = 1.5C,, = 0.75, by = 1.5C,, = 0.74, s = 0.75) and by
the MD rule (with the parameters by = 1.40, by = 1.38).

Example 1. Kernel K(¢,s) = [t + s)/2 + ts + 1/3, exact solution u(s) = 1, right-hand term f(t) =
t+7/12,a=0,b=1.

Example 2. K(t,s) = 1/(7((s — )2+ 1)), u(s) = (1 —s?)2, a=—1,b=1.

Example 3.

—-s), if t<s,
Kl 5) = { m2s(1—t), if t>s,

u(s)=1,a=0,b=1.
Example 4. K(t,s) = exp(ts), u(s) =1, f(t) = (exp(t) — 1)/t,a=0,b=1.
Example 5. K(t,s) = ts, u(s) =s/2, f(t) =t/6,a=0,b=1.
Example 6.
[ tl—-s), if t<s,
Kt s) = { s(1—1t), if t>s,
u(s) = s —28% + 5%, f(t) = (3t — 53+ 3t° —1°)/30,a =0, b= 1.
Example 7.
[ tl-s)(2s—s?—t%), if t<s,
Kt s) = { s(1—1)(2 —s2—12), if t>s,
u(s) =1, f(t) = (t —2t3 +11)/24,a=0,b=1.
After the discretization of equation (21) we get

hZKijuj:fi7 i:1,2,...,n. (22)
j=1
b—a

where K;; = K(t;,s5), u; = u(s;), h =
used n = 50. In the case of the given right-hand side of (21) we used f; = f(¢;), in the contrary case the

numbers f;, ¢ =1,2,...,n were computed by formula (22). For obtaining the approximate right-hand side
F = {fi}? the vector f = {f;}7 was randomly perturbed with relative noise || f — f||/|| f|| = 10~ *+1/2,

,Si=a+h/24+(—-1)h,i=1,2,...,n. For discretization we

k=1,2,...,13. The following norm in the space R™ was used: ||[v| g~ = (A 3 03)1/2. The approximate
i=1

solution u, = {u;}* was computed as the solution of linear system (r~'1+K)u, = f, where matrix K =
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Table 1. Averages and maximums of terms Vi, Vs, by/b., d., 60/d

Averages Maximums
Nf—flI/0 | Vi|bu/ba| du| Vo 50/ Vi | be/by d. Vs 50/6
110911 1.00|0.64 | 0.99 0.81 2.38 1 1.00 | 2.20 2.80 14.33

31087 | 1.00 093] 0.94 2.17 2381 1.00 | 2.20 2.80 42.99
51087 | 1.01 093] 094 3.56 238 1.22 | 220 2.80 71.65

10 10.88 | 1.03 | 1.06 | 0.95 7.04 2.38 1 197 2.20 2.80 143.31
20 1098 | 1.14 123 1.06 | 13.73 4.68 | 3.00 | 3.12 5.27 286.61
50 | 1.26 | 1.22 ] 1.58 | 1.36 | 33.55 | 12.61| 506 | 6.02 | 14.07 716.52
100 | 1.45 | 1.18 1 1.95| 1.57 | 66.33 | 15.60 | 5.08 | 9.30| 16.60 | 1433.05
1000 | 5.79 | 1.09 | 3.57 | 6.45 | 577.70 | 106.31 | 2.48 | 35.89 | 125.07 | 14330.48

Table 2. Percentual characterization of experiments

% of experiments for which
D=|f=flI/5 | Va<1|b/ba<1|b/ba<2]|di<1
1 90.11 100.00 100.00 | 92.31
3 85.71 100.00 100.00 | 95.60
5 82.42 92.31 100.00 | 86.81
10 82.42 89.01 100.00 | 74.73
20 79.12 81.32 93.41 | 76.92
50 74.73 84.62 91.21 [ 79.12
100 73.63 92.31 93.41 | 81.32
1000 67.03 80.22 96.70 | 85.71
All 79.40 89.97 96.84 | 84.07

(hKi;) and I is the identity matrix. In rule P the function ¢(r) = P12 KY2(r 11+ K) 2 (Ku, — f)||gn
was used and for the supposable noise level 6 = ||f — f||/D was taken, where values of D were 1, 3, 5,
10, 20, 50, 100, 1000. In the MD rule the actual noise level § = || f — f|| was used. The ratios

sy — wal [[er(s) — uall

T 7 Tan — uall

with ®,(||f — fI|) = 11;f0{||(l — Agr (A (uo — u)|? + (wllf — FID?])Y/2 were computed. Note that V;

characterizes the coefficient of the quasioptimality (compare with formula (5)).

The results of numerical experiments are given in Tables 1 and 2. The results show that in the case of
the exactly estimated noise level (D = ||f — f]|/d = 1) and in case D < 10 the rule P works nearly as well
as the MD rule or even better (average of ratio Vo was 0.95). As expected, in the case of the essentialy
underestimated noise level (D > 20) the error of the approximate solution for the rule P is larger than
for the MD rule which uses the exact noise level. But the ratio of errors of these approximate solutions
is relatively small in comparison with the error made by estimating the noise level. For example, if the
noise level was D = 100 times smaller than the real value, the average of the error of the approximate
solution for the rule P was only 57% larger than for the MD rule and for 73% of problems the rule P
gave better results than the MD rule.

Note that in problems with smooth kernel (examples 1, 2, 4, 5) the rule P gave similar results as MD
rule independently from D (maximum of V5 was 1.56), but in problems with nonsmooth kernel (examples
3, 6, 7) Vo depends more on D.

Table 2 shows that in most experiments we had b, = by (90% of all experiments, 100% of experiments
with D < 3) and D, <1 (independently from D), therefore coefficients C(b1, b, ds) in Theorem 2 are
small. Table 2 indicates also that J§p increases with increase of D. Numerical examples also show that in
most cases ro(8) > R(9).

6. CONCLUSION
For the choice of the regularization parameter r it is recommendable to use the noise level, while heuristic
rules such as the L-curve rule, the GCV-rule etc do not guarantee the convergence of the approximations.
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If the noise level is given only approximately and inequality || f—f II < §is not guaranteed, the discrepancy
principle and its modification are unstable. If § with || f — f]|/6 < const for 6 — 0 is given, we recommend
to use our rules P and P’, guaranteeing convergence and in case ||f — f]] < ¢ also quasioptimal error
estimates.

Note that by increasing parameter s € (0, 1) the error estimate (8) increases and estimate (9) decreases.
Therefore, if we are almost sure in inequality || f— f]| < §, smaller values of s are recommended. Numerical
examples show that it is reasonable to take the parameter s in the interval [0.6,0.8].
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